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NUMERICAL TREATMENT OF LINEARIZED EQUATIONS DESCRIBING
INHOMOGENEOUS COLLISIONLESS PLASMAS

H. Ralph Lewis
Los Alamos Scientific Laboratory, P. O. Box 1663
Los Alamos, New Mexico 87545, U. S. A-

I. INTRODUCTION

There is considerable current interest in the {initial-value problem for the
linecrized equatrions which desacribe small departures from equilibrium of a fully
ionized plasma in which one or more of the particle s9pecies can be treated as
collisionless. Present-day research 1in controlled thermonuclear fusion requires
information about the stability of such systems and the effects of phase mixing 1in
them; this 18 also true in other fields, such as space physics, in which the physics
of ccllisionless plasmas plays a role. During any specified period of time, the
collisionless description for a particular particle species in an experimental
plasma applies if the temperature of the species 1s sufficiently high. The
linearized equations for spatially 1inhomogeneous plasmas 1in which there 18 a
collin onless species : difficult to solve, even computationally, because all
three velocity compponents and at least onme 2-1t1al :oordinate must be considered as
independent variables in the analysis. This means that the equations are a system
of coupled integrodifferential equations 1in which there are at least five
independent variables--time, three velocity components, and at least one spatial
coordinate. Recently, pro;ress has been made in the formulation of the problem in
terms of a disper3sion matrix, and applications of the fomulation to interesting
equilibria with one rnonignorable coordinate have been made. When there is one
nonignorable coordinate in the equilibrium, only that spatial coordinate appears as
an Jndependent variable In the system of {(ntegrodifferential equations. The
formulation {8 in terms of a description of the three-dimensional equilibrium motion
of particles which 1s obtained by using an equivalent one-dimensional potential.
Integrals with respect to time arise which extend over the times appropriate ror the
equiva'ent one-dimensional problem; for orbits which are trapped in the equivalent
one-dimensional potential, the integrals extend over the bounce periods 1in the
one-dimensional potentlal and not over the infinite time history of the equilibrium
three-dimensional orbits. This approach has '‘e@n da2scribed 1in the context of a
general discussion of the {nitial-value problem for linearized equations which
describe plasma systems {n which there i3 a collisionless species.l Applications of

the general formalism have been made to the stabtlity of a plasma column within the



framevork of the Vlasov-fluid node12 and to the stability of large-amplitude
Bernstein-Greene-Kruskal .quilibria.3 The basic approach has also been used
independently in the context of the Vlasov-fluid model to study the stability of a
rotating therta pinch,“ and to 1investigate the effects of resonant particles on

5
kinetic stabilization in screw pinches. Additional work is in progress.

In Section II, the basic 1linearized equations are presented in a general
context, specialization for one nonignorable coordinate 1is indicated, and a
formilation for numerical work is introduced. Numerical aspects cf the problem are
discussed in Section iII, including choice of matrix representation and methods of

solution. Some concluding remarks are given in Section IV.
II. GENERAL THEORETICAL FRAMEWORK

We consider a plasma which consists of one or more collisionless particle
species which are governed by a linearized Boltzmann equation for each collisionless

species s,

(ait‘.'i].ag)fgl) -UE®(1) H (1)

and we assume that the plasma can be described by these equations and a set of field

equations of the form

k(1) « gfd3y Js(g.g)fél)(gn!.t) . (2)

The quantities Ls' Us' usnd K are linear operators, and fél) is the perturbation of a

single-particle distribution function £, about an equilibrium distribution function
f;O):

o (ravat) = 6,000 ¢rv) + £, (D(r,v,0) . €))

The quantity b(l) is the perturbation of an array ¢ of potential functions about an

equilibrium array ®<0):



o(g,t) = 00 () + ¢ ¢r,0) . %)

The symbola r and v denote position and velucity vectors.
A 3imple example of equations of this form is the set of 1linearized equations

for a one-dimensional electron gas 1. a background of immobile ions of number

density no(xi:

(el pedel® 3y e atl® 20l

ot 3x m dx dv’ m dv x *
24,(1)
a_a%z—- lmefdv f(l)(x,v,t) . (6)

The symbols x and v denote the one-dimensional position and velocity variables. The
quantity ¢ represents a aingle potential function, the scalar potential for the

electric field; ¢(°) is a function of x only which is related to f(O) by

24(0)
37§1r— = dre[fav (9 (x.v) - n )] m

x

The electron mass i8 m, the electron charpe 18 -e, and the ion charge is e.

An example of equations of the form of (1)-(2) which are useful for describing
a plasma in a magnetic field is given by the Vlasov fluid model.® This model is a
low-frequency model for an ion-electron plasma in which the ions are treasted as
collisionless and the electrona are treated a3 a massless, pressureless fluid. The

linearized equations are

df(O)(E) %)

3
[st_ + !.YE + ﬁ_(E(O) + % !,(E(O)).Y!Jf(l) - - e = ve , (89)
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_‘}_ﬂ[(!x!(O))x!(l) + (!!E(”)XE(O)} - en(O)g(l)

- efady (E(D) + % wp(0))e (1) (9)

Here, e and M are the ion charge and mass, respectively; ¢ is the speed of light; E
and B are the electric and mnagnetic fields, respectively; f 1is the 1{ion

gingle-particle distribution function; the equilibrium distribution Ifunction {is

assumed to be a fuunction of the energy € only; and € and n, are defined by
e=2m? s eV, (10)
n(0(r) = fady £00)¢ey . (1

The array of perturbation potentials 1in (8)=(9) 1s the set of components of a

displacement vector Q(E.t) from which 5(1) and E(I) are derived:

g1 . %:_f B _yE.g) (12)

E(1) - Y*(E‘E(O)) , (13
where

5'9(0) 0. (14)

For some exanples of equattons (1)-(2), it <can be wuseful to replace the
perturbation distribution function f;l) by an auxiliary function By which 1s a

linear functional of the perturbation potentials:

gg = f;l) — Parv(l) . (15)



where P, 18 a linear or-:rator. The equations for the auxiliary functions and the
perturbation potentials are of the same form as (1)-(2):

(% +1L)g, w Wooll) (16)

Me(1) = Tfady 3g(ra0)gg(£s¥st) an
where

A=K - gfd3! Jg(r,v)P, - (18)

The utility of 3such a transformation of dependent variables is that the field
operator A which appears in (17) can chosen arbitrarily while preserving the form of
the equations. In particular, the operator on the left hand side of (16) is
unchanged by this transformation. The introduction of auxiliary functions in this
way can te advantageous 1in numerical approximation schemes, a point to hich we
return later. Of course, the original equations, (1)=-(2), are an exs" le of
(16)-(17). The original field operator, K, involves time differentiation Lor some
physical systems of interest; an example 1s the case of the Vlasov~fluld model us
indicated in (9). For these systems it 1is possible to introduce auxiliary functions
such that A does not involve t or the operator 9/dt. Henceforth, we consider

(16)=(17) as the basic equations and assume that A does not involve t or 3/9dt.

1t 1s convenient to consider the solution of (16)-(17) for the evolution of gy
and the perturbatiou potentials in terms of Laplace transforms. We denote the

Laplace transform of a function h(t) by ﬁ(w). where

-1 -lwty R ) 1wt
h(t) Tﬂ-fcdwe h(w) , hiw) fod:e h(t) , (19)

and C 18 a suitable Bromwich contour. For the physical applications which we
envision, the linear operator W, may involve thé time differentiation operator 3/Jt,
but time does not occur in W, in any other way. Therefore, it is appropriate to
define ﬁs(m) as the result of substituting =iw for 3/3r {n Wge The solution of

(16)=(17) for the Laplace transforms és(m) and £(1)(m) is



(D () - - tD'l(w):fd3! JglL, = w]7 o () + gg0] , (20)

Bg(v) = - (Lg - m]'lﬁs(m)n'l(m){ Jadv 3oLy = w]7 [ eg- () + goe ()]

a8
- 1Ly - w] M og(w) + g (0], (21)
vwhere
D(w) = A+ 1 Jfddy J [ig - 0] W () , (22)
8

and where gs(O) i1s the value of gs(t) at t=f) a.u Qs(m) can be constructed from the
values at t=0 of ¢(1)(t) and its time derivatives. The contour C for the Llaplace
transforms must be above all =ingularities of $(1)(w) and és(m). The inverse of the

operator [L - w] is nonsinguiar except on the real u axis because L {s a Hermitian

1

s
operator. Singularities off the real axis and not assoclated with initial
conditions are singnlarities or D'l(w). The operatcr D(w) is called the dispersion
operator. It plays a crucial role in determining the stability properties of the
system, and it will be 1importan. in our discussion of numerical approximation
schemes. Note that the dispersion operator does not depend on the operators P, 1in

terms of which auxiliary functions gg may be defined.

It can be shown! that the singularities of 5(1)(w) and és(w) are located at the

roots of the equation

[Ndet(L, - wl)|detD(w) = 0, (23)
8

where 1 1s the unit operator in (E'!) space. Because L, is Hermitian, any root of
this eqaution which has an imaginary part, corresponding to exponential growth or
decay, must be a zero of detD(w). The ctability of the system (16)-(l7) can be
studied numerically by finding a suitable finite-dimensional approximation to D(w)-.
A numerical approximation to the solution of che initial-valuec problem for a fixed
length of tine can be obtained by finding a suitable approximation of the roots of
(23) in terms of a finite number of points in the w plane. Since th. eigenvalue
spectrum of Ly 1s a set cf real continua, approximating the roots of (23) with a
fini.e number of points means approximating continuous spectra with discrete spectra
of finite saize. We nnow turn to the question of conatructing numerical

approximations.



IIl. NUMERICAL ASPECTS OF THE PROBLEM

For numerical purposes it 18 useful to introduce eigenfunctions of L, as a
basis for the (r,v) space for species 8. This 15 also useful for some analytical
calculations. The eigenfunctions of L, are a complete set of functions in

(E'!) space which we take to be ‘rthonormal: !

L w

a¥sr " Yer¥sr (24)

("Bt' "St') - 6‘::- R (25)

where the index r stands for whatever set of labels 18 needed to specify w the

sr’
parenthesis notation denotes an 1inner product, and & .- stands for s product of
Krcnecker deltas and Dirac delta functions--one Kronecker delta for each pair of
discrete labels, and one Dirac delta function for each pair of continuous labels.
IZ at most one coordinate is nonignorable in the equilibrium configuration, then the
eigenfunctions w,. and eigenvalues b . can be found explicitly in terms of definite
integrals.! The eigenvalues Ugy Play an important role {in resonance denominators
arising from the 1inverse of the operator [L - w] which appears in the Laplace

transforms (20)-(21).

In order to have a watrix representation of D(w), we also introduce a basis for
configuration space with basis functions n,(r). In =ome cases, the basic equations

can be formulated such that one of the eigenfunctions of the operator A which

appears in (17) 1s a good approximation to ¢(1)(m0) for a complex frequency wg of
interest. Then, choosing the basis functions n, to be eigenfunctions of A 1ia
advantageous,

An_ = Aon . (26)

The operator A can be chosen to be Hermitian for most problems. However, it may not
be Hermitian, in which case it can be useful to define a dual set of functions

Snlrls

(Gqe Tige) = 80 s (27)

where again Gn » gtands for a product of Kronucker deltas and Dirac delta functions.

n



Even 1f one of the eigenfunctions of A is not a good approximation to ;(l)(wo). a
lipear combination of a feaw of the eigenfuncticns may be good; in this case it would
atill be a good idea to let the basis functions i, be eigenfunctions of A because a
small truncated matrix representation of D(uo) could be a good approximation. Of
course, the optimal choice of basis would be one with which the representation of
D(w) would be diagonal; then, detD(w) = 0 would be satisfied by setting any diagonal
element to zero- If the aquilibrium is spatially homogeneous, D(w) can be made
diagonal by choosing basis functions proportional to exp(ix-r), a familtar aituation
in the stability theory for an infinite homogeneous equilibrium in plasma physics.
However, when the equilibrium is spatially inhomogeneous, the basis functions which
diagonalize D(w) generally will depend on w, and are usually not known for any given

W

There {8 a s8ystematic way of determining a A whose eigenfunctions are good
basis functions. Sometimes the procedure can be carried out. The 1idea is to try to
diagonalize D(x) for a mode of interest whose frequency 18 near w = woe If the

basis functions are eigenfunctions of A, then the operators Ps must satisfy
Wglug) = 0,
which means
1(Lg ~ wg)B sV wy) = Ugwp)etVwy) - (28)

This corresponds to an approximate solution of tha2 original linearized Boltzmann
equation. The parameter wo 13 determined by solving the dispersion relation

obtained from the approximate solution of (28). The P, deternined i1in this way

depends parametrically on W, and 1t determines, through (18), a A whose
eigenfunctions form a suitable basis for working with a severely truncated
dispersion matrix in the neighborhood of w = W

The procedure  just outlined for letermining the basis functions for
coafiguration space is good if it can be carried out. For example, it was effective
in studying the atability of a large-amplitude Bernstein-Greene~Kruskal
equilibrlum.3 However, it does occur for some problems of physical interest that A
has to be chosen rather carefully. For example, 1n the case of a magnetized plasma,
there are modes for which spatial variations of short scale length, on the order of
the {on gyroradius, are present 1in addition to variations of much longer scale

leng:h.“” For the procedure of using only a few of the eigenfunctions of A to be



effective, they must be able t, represent all of the important spatial variations
with sufficient accuracy, the sho:t scale lenpth variations as well as those with
long acale 1lengt*. For a specific problem it may not be possible to solve (28) to

oufficienc accuracy, or it may be inconvenient to do so.

When it 1s not feasible to use a very small truncation of D(w) by caking the
eigenfunctions of a suitable A as the basis for configuration space, it is necessary
to choose a basis with which arbitrary variations of e appropriate scale lengths
can be adquately represented. This can easily lead to a matrix representation of
D(w) whose dimension is large enough that very serious computer storage problems are
encountered. 1f there is more than one nouignorable coordinate in the equilibrium,
there 13 at present no general numerical procedure for finding the eigenfrequencies
of the system. Even in the case of one ncnignorable coordinate, there has not been
a generally applicable numerical procedure so far. Recently, however, an approach
has been found which should render it feasible to find the eigenf.equencies
numerically for a general equilibrium w{th one aonignorable coordinate.® The
approach makes detailed use of the explicit form of the eigenfunctiovns and
eigenvalues of the operator Ls'l organizes the computational work in a way which
minimizes computer storage prcblems, and relies on some empirical simplicity of the
dependence on w of elements of the dispersion matrix. A computer code based on this

approach is being constructed.

An approximation to the solution of the initial-value problem for (15)-(17) can
be obtained by approximating the entire spectrum of solutions of (23), including the
continuous branches. The continuous part of the spectrum ic responsible for phase
mixing in the evolution of the system, an example of vhich is a decay in time of
electrostatic perturbations which {1s known as Landau damping. If a finite set of
basis functions Yor and n, is used, as will be the case in computational work, then
(23) 1is in fact always a polynomial equation.l Deapite the fact that the polyromial
can be of very large degree, it can be evaluated because (23) represents the
polynomial as the pr.’ uct of the determinant of a diagonal matrix times the
determinant of the dispersion matrix. The determinant of the diagonal matrix 1is
trivial to evaluate, and the determinant of the dispersion matrix can be evaluated
if the number of basis funcctions N, 1s not too large. All of the roots of such a
polynomial equation of large degree can be found simultaneously by means of a
quadratically convergent {teration method proposed by Aberth.9 Kerner,lo. and

Durand.!! The method also converges when there are multiple roots.



IV. CONCLUSION

The equati na governing the small-signal responss of spatially inhomogenecu-~
collisionless -1lamas have practical :?‘gnificance in physics, for example 1in
controlled thermonuclear fusion research. Although the solutions are very
complicated and the equations are difficuit to solve numerically, effective methods
for them are being developed which are applicable when the equilibrium involves only
one nonignorable coordinate. The generrl theoretical framework probably will

provide u basis for progress when there are *wo or three nonignorable coordinates.
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